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SHOCK-TURBULENCE INTERACTION AND THE GENERATION OF NOISE!

SUMMARY

The interaction of a convected field of turbulence with a
shock ware hax been analyzed to yield the modified turbulence,
entropy spottiness, and noise generated downstream of the
shock. This analysis generalizes the results of Technical
Report 1164, which apply to a single spectrum component, to
give the shock-interaction effects of a complete turbulence field.
The prervious report solved the basic gas-dynamic problem,
and the present report has added the necessary spectrum analysis.

Formulas for speetra and correlations have been obtained
and numerical calculations have been carried out to yield
curces of root-mean-square velocity components, temperature,
pressurc, and noise in decibels against Mach number for the
Mach number range of 1 to = ; both isotropic and strongly arisym-
metric (lateral perturbations/longitudinal perturbations=36/1)
initial turbulence hare been treated. [t was found that in
either case initial turbulence with a longitudinal eomponent
of 0.1 pereent of stream velocity would yield a noise pressure
lerel of about 120 decibels; the value of lateral component had
relatively Nttle effect.

The present results are applicable quantitatively to flow in
duets or channels containing normal shocks; they are presumed
to provide a qualitative quide to the generation of noise by the
shock structure in a supersonic free jet.

INTRODUCTION

The propulsion of aircraft by means of jets gives rise to
intense noise as an unfortunate byproduct. Programs of
noise abatement are under way, but at present they are
largely empirieal: even with the general guide provided
by Lighthill’s theory (ref. 1), the understanding of the
mechanisms of noise generation is far from complete. It
appears from both experimental and theoretical evidence,
however, that the interaction of turbulence with shock waves
must often play a part. On the theoretical side, the genera-
tion of noise by such interaction is pointed out independently
in references 2 and 3. The shock-turbulence interaction
was found to produce, in addition to the noise, an entropy
“spottiness’’ aft of the shock (manifested as a temperature
and density spottiness at constant pressure, ref. 2).

Turbulence, entropy spottiness, and noise (pressure
fluctuations) are examples of the three fundamental modes
>f small disturbance perturbation of a gas (refs. 4 and 5):
more specifically, the categories are vorticity mode, entropy
mode, and sound mode. The vorticity mode (turbulence)

By H. 8

RiBNER

and the entropy mode are essentially *“frozen’™ patterns
(to use Kovisznay's term) that are convected by the main
flow; the sound mode, however, consists of waves that pro-
pagate in various directions in addition to being conveeted.

To the first order in the perturbation velocity, there is no
tendency for the modes to interact or for an isolated mode
to spontancously generate one of the other modes (ref. 3).
(The weak transference of turbulence into noise described
by the Lighthill theory is a higher-order effect (ref. 1)
The presence of a shock wave, however, provides a mecha-
nism for a very strong transference: thus, when any one of
the three modes—turbulenee, entropy spottiness, or noise—
encounters a shock, the interaction will give rise to all three
modes, in comparable strength, downstream of the shock
(refs. 2, 4, and 6).

The first of these cases, shock-turbulence interaction, has
been investigated at the NACA Lewis laboratory as an
outgrowth of reference 2 and is reported herein.  The anal-
vsis of the earlier paper was concerned with a single spee-
trum wave of a turbulent field and was primarily a study
in gas dynamies. The present paper reformulates the re-
sults and incorporates them in a speetral analysis; from the
analysis come the quantitative cffects of the interaction of a
convected homogeneous field of turbulence with an extended
plane shock front. (Some results of this work are reported
in abbreviated form in refs. 7 and 8.) The perturbation
veloeity, pressure, temperature, and density distributions
behind the shock are described in terms of formulas for
their spectra, correlations, and mean-square values; these
are separated into the respective contributions of turbulence,
entropy spottiness, and noise.

Numerical calculations are presented for the root-mean-
square values of the pressure (noise) and components of the
temperature and velocity perturbations for the Mach num-
ber range of 1 to o ; one set of caleulations refers to iso-
tropic initial turbulence, another set to strongly axisvmmetric
initial turbulence (lateral perturbacions longitudinal pertur-
bations =~ 36/1). The noise pressure level is also presented
on an acoustic scale for several levels of initial turbulence.

SHOCK INTERACTION OF SINGLE SHEAR WAVE

QUALITATIVE DISCUSSION

According to the Fourier integral theorem, a turbulent
velocity field can be represented as a superposition or spec-
trum of elementary waves. A single spectrum wave can be
interpreted physically as a plane sinusoidal wave of shear-

! Supersedes NACA TN 32585, ““Shock-Turbulence Interaction and the Generation of Noise,” hy H. 8. Ribner, 1954,
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ing motion (e. g.. ref. 9); a portion of such a wave is shown
in perspective in sketeh (a):

1a) Wave of shearing motion.

A similar wave encountering a shock is shown schematically
in sketeh (b)),

U —————-

Shock

ib) Convection of shear wave through shock: original unsready-flow
problem.

the wave and the shock being viewed “edge-on.”™  The
wave-shock interaction is analyzed in reference 2, and
what follows first is a brief physical account of the main
results. The wave is supposed to be convected downstream
by the mainstream with velocity {7y so that it passes through
the shoek. The passage is evidently an unsteady process,
since the intercepts of the inclined lines—the planes of
constant phase or wave fronts—move downward along the
shock; it can be shown that a sinusoidal disturbance ripple
will move along the shock with the same speed 17

The unsteady-tlow problem may be treated direetly (ref.
4), or it may be converted to an equivalent steadv-flow
problem by superposing an upward velocity 17 (ref. 2).
The conversion is illustrated in sketeh (e):

Shock

{¢) Transformation to steady-flow problem by superposition of
veloeity 17

The cross velocity V7 theren has been chosen so that the
resultant stream velocity = paraliel 1o the wave front=m
the shear wave: the obzerver then <eex what appears 1o he
a steady sinusoidal shear tlow passing through an obhigue
shock.  This may be called the equivelent obligue shoek
{Addition of the upward veloeity Vs of course. equivalent
to transforming to a moving franee of vreference.

Dowpstream of the <hock. the resultant <tream tlow 1~
deflected according to the laws for obligue shacks: the stream-
lines are the upper lines in the sket-he The vortieny of 1he
inttial shear wave is convected along these streamlines
together with the additional vorticity generated by the
shoek.  The net result s a refracted, amplificd <hear wave
alined with these streamlbines. The angle of prefraction (-
just the angle of flow deflection of the oblique shock.

Superposed on the refracted shear wave s an entropy
wave of the same inelination and wave fecothe This wave
arises from the conveetion of entropy perturbations gener-
ated at the shoek, precisely as the shear wave results from
the conveetion of vorticity.  The entropy wave i manifested
physieally as a spatial variation of temperatnre and density
at coustant pressure. by virtue of the equation of state,

The nonunitori: veloeity in the shear tlow pesult= inoa
nonuniform pressure jump across the shock.  The ultimate
effeet ix that the shoek front desclops vipples, modifving
the pressure variations, and the resultant pressure varations
propagate downstream as a plane sinusoidal wave ilower
lines in sketeh (e,

The character of this wave depends on whether the
resultant veloeity 1 behind the equivalent oblique <hock i~
subsonic or supersonic: this in turn depends on the initial
wave inclination throngh 1. When W is supersonie. the
pressure wave is a plane sinusotdal sound wave: it appears
as a stationary Mach wave pattern in the steady -tlow refer-
ence frame.  When Vs subsonie, it may be shown that the
pressure wave, while still plane, is not a simple sound wave,
but rather attenuates exponentially with distanee down-
stream of the shoek; the resadtant distarbance veloeity s
not normal to the wave front. and the wave propagates
relative to the surrounding flutd at less than souie speed.

QUANTITATIVE DISCUSSION

Elementary wave. - Thus far the waves have been dix-
cussed only qualitatively.  Elementary spectrum waves of
this sort may be expressed quantitatively in the form

e 4/Z‘,I s (h

(Al symbols are defined in appendix A The wave-uunher
veetor & is direeted normal to the wave fronts and it< magni-
tude equals 27 'wave length.  The wave amplitude is given
by the complex quantity ¢7..  When a stands for tempera-
ture. pressure, density, or entropy. these are simple sealar
waves,  When a stands for the components w, » o of the
\'(‘lm'il‘\. these are veclor waves; (wo cases may then be
distinguished: the waves are cither irrotational and com-
pressible (sound waves) or rotational and incompressible
(vorticity waves).  (See, e. g, rel. 1000 In the first case
the irrotationality  condition cwrl g -0 requires that the
veloeity @ and wave veetor b be parallel (w, r. 0 proportional
1o ky, ko kg respectively)s the sound waves are thus longi-
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tudinal.  In the second ease the incompressibility condition
div @=:0 requires that the velocity g and the wave veetor £
be perpendicular; that is,

ko ksr+ k=20 2)

Thus, the vorticity waves are transverse and have the
character of a shearing motion (sce sketeh (ah); in the dis-
cussion they have been referred to as “‘shear waves™

Geometric reexamination of prior results. - The shock-
interaction process for a single shear wave is given quanti-
tatively in reference 2, but the results are formulated in two
dimensions, [t will be necessary to reexamine the problem
geometrically in order that the results may he reexpressed
in three dimensions.

A perspective view of the initial shear wave i the new
£, recoordinate svstem is shown in figure 1. The portion
of the shear wave shown is on the downstream side of the
shoek front, which is identified with the »,, rpe-plane. A plane
passed through the r-axis perpendicular to the wave fronts
cuts the shock in the line Or. At a given instant of time
this ), r-plane corresponds precisely to what is ealled the
r. y-plane in reference 2. The angle ¢ of the . r-plane with
the horizontal is then the third coordinate in a system of
eviindrical coordinates,

In reference 2 the time was eliminated from the equations
by employing a frame of reference moving with a veloeity V
downward along the shock front. the so-called steady-flow
frame of reference.  In the present paper all results refer
to a definite instant of time, #=0. Thus, motion of the
referenee frame plays no part, and the results of the earlier
paper carry over to the present coordinate svstem on simply

3

T

Shock piane

*2

¥y

Frorre 1. Perspective view of shear wave in relation to reference

frame.

ot
Fravee 20 Projective view of shear wave in relation to reference frame
replacing r.y by s vespeetively. The results of the
transformation are given in the following sections with the
disturbances reexpressed in nondimensional form according
to the scheme
w. r, o= components of veloeity perturbation critical speed
of sound a*

p=-pressure perturbation mean statie pressure

o= density perturbation mean density

T =-temperature perturbation. mean temperature
In addition, there are other minor respects i which the
notation has been modified from that of referenee 21 for
example, the waves are expressed in complex form.

Initial shear wave ( ~ initial turbulence). --At time f=0,

the velocity field of the initial shear wave is, in evlindrieal
coordinates,

du - dZ ot
dr. dZa (3)
dry = dZ o157

where dais parallel to o (longitudinal direction), de, is parallel
to r.and v, 1s perpendicular to r and #, in the direetion of
incereasing ¢ {(see figs. 1 and 2}, The wave-number vec-
tor & lies in the o, r-plane, making an angle 6 with the r-
axIs.

Refracted shear-entropy wave (~final turbulence and
entropy spottiness). -The velocity field of the refracted
shear wave (fig. 3) is

du’ - dZ ek
dv. = dZ et "

lll'; = 4IZ;P'k"r

A7 = X dZ,
A7 =Y dZ, (4)
A2, =dZ,

at time #= 0, where k' is the new wave-number vector, makin
g

an angle 8 with the r-axis. The radial components of &’
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and k are equal (k) =k, and the further dependence of
k' on k is expressed through the dependence of ¢ on 4.
Similarly, the complex amplification factors .\ and Y de-
pend on k in terms of 8. Expressions for X, ), and ¢ are
given in appendix \.

The perturbation pressure dp’ will be zero because this is
again a shear wave, free of aceelerations.  The temperature
perturbation associated with the companion entropy wave
(fig. 3) will be

dr’'=dZ % o7, = _' dZ, (5
With p’=0 (1o the first order), the dimensionless density
perturbation p” will be just the negative of the dimensionless
temperature perturbation 7', according to the linearized
equation of state.  The form of the function 7" i given in
appendix A,

Aside from the change in wave inelination, the deseription
of the refracted shear-entropy wave in terms of the initial
shear wave depends entirely on the amplifieation factors .\
and Y} and the function 7. Such functions play a role
similar to the “transfer functions™ of the theory of servo-
mechantsms (ref. 11), and it appears appropriate to carry
the name over to the present field.

Generated sound wave ( ~ noise field). —The shear-entropy
wave downstream of the shock is accompanied by a plane
irrotational pressure wave (sound wuave) of different in-
clination (see fig. 3).  For small inelinations # of the initial
shear wave, this pressure wave attenuates exponentially with
distance from the shock; for inelinations greater than a
certain eritical value 6., (see appendix Aj, the pressure wave
s unattenuated. The eritieal wave inclination 8., corre-
sponds to the attainment of sonie speed in the mean flow
behind the “equivalent oblique shoek™ referred to in the
qualitative discussion.

The veloetty field can be represented in the form

llll” — 1[ZZl‘lk'J
T VAR

A= d 7

Az, =xdZ,
dZ=1dZ,
412::1)

()]

where £’" i1s the wave-number vector, making an angle 8
with the r-axis; again the radial component matches that of
k; namely, k;=k. The sound-wave angle 8”7 and the
transfer functions x and T are speeified functions of the
shear-wave angle 8; morcover, for 056<8,,. x and T are
functions of r;, showing an exponential decay to zero as
5o,
The pressure perturbation may be written

dp” =dZ, e " a7z, =rdz, ("N
where PP=P(x)) is a transfer function defined in appendix A;
like x and T. I’ decays exponentially with » for 0<6<4,..
The corresponding density and temperature perturbations
are proportional to p’’; they may be obtained from the
isentropic property of the sound wave as p’’ =p’//y and
e =),
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Transformation to Cartesian coordinates. - Kxpressions
for the velocity tield in Cartesinn coardinates will he needed.
The transformation from evhindrieal coordinates 12 effected
by means of the relations

dZ, ~dZ, cos o —dZ, sin ¢
tlZu- a
where primes (~ refracted shear waver or double primes
(~ sound wave) may be serted throughout as needed.
The transformation results in

Initial da-dZ ¢ where o u, e
shear

(da’ =dZ,e*" " where the values of 470
for a=u, r. w are, respectively,

oo . (1]
dZ, sin ¢+ dZ, cos ¢

“h

dZ. = XNdZ,

dZ =Y dZ, cos ¢

Final

Shear

} 1Oy

I/Z.‘. sin ¥

\ dZ, ~ Y dZ, sin ¢ JIZ, oS ¢ J

(do” =dZ5e™ . where the values of 700

for a -u.roware. respectively,

dZ) - xdZ, SRR

Sound 4
(/Z:': YdZ, cos ¢

{20 =T dZ, sin ¢ J
SPECTRAL ANALYSIS OF RANDOM FIELDS

The foregoing relations will be fitted later into a specteal
analysis of the ficlds of turbulenee and noise.  Appropriate
analytical techniques can be found in the speetral theory
of random functions; suitable developments of this <ort are
given by, for example, Moyal (ref. 10) and Batchelor (ref.
12) for spatially homogencous fields.  The first part of the
present section will be devoted to an interpretation (with
some liberties) of relevant parts of the two papers: the latter
part will be devoted to developments for inhomogencous
fields and for correlations of a two-dimenstonal field with

a three-dimensional field.

Shear-entropy
wave

1=""'al shear
ave Sound wave

Shock

Ficvre 3. Interaction of shear wave with shoek: view in ry, r-plane.




SHOCK-TURBULENCE INTERACTION

HOMOGENEOUS FIELDS

Amplitude spectra. (onsider a threesdinmensional field
of small disturbanee (e. g.. turbulence or noise) of unlimited
extent.  Let this tield be homogeneous in the sense that the
statistical properties do not vary from point to point. The
instantaneous spatial distribution of any physieal quantity «
ean then be represented mathematically by a Fourier integral
in the Stieltjes form (refs. 10 and 12)

ald) f«-"-‘dl,.(k) (i2)
where the triple integral goes from — ® to @ in cucli com-
ponent of k= (h, by, by,

If cquation (12) 1= weitten in the form

o— (lld(&)

then, by comparison with equation (1), de can be wdentified
with what has been ealied an elementary spectrum wave.
The Fourter integral is thus to be interpreted as a superpo-
sition of infinitely many of sueh plane waves.  In the inte-
gral the components of £ take on all values: it follows from
the significance of £ ns a wave-number vector that all wave
inclinntions and wave lengths appear.  An aggregate of vor-
tieity waves with a suitable distribution of amplitudes among
the various wave lengths and inclinations can represent a
turbulent tield (ref. 130, Similarly, an aggregate of sound
waves suitably distributed ecan represent a ramdom
ficld (ref. 10). Finally, an aggregate of the sealur entropy
waves can represent a random field of entropy spottiness.
A combination of these three basic types of disturbance
entropy spottiness, turbulenee, and noise - constitutes the
most general random small-disturbanee field that may exist
in agas (refs. 4 and 3).

Correlations. - -Let o be measured at some point /7 and 3

noise

at some poant 77 veetor distunee £ from 225 then the space
average of the produet of as 7 and P vary but their veetor
separatic. £ is held fixed may be defined as the space-average
correlation «B(f).  Alternatively, the disturbanee field may
be considered to be just one of a large number, or ensemble,
of statistically similar fieclds (e, g., the flow fields of a great
many “identical” wind tunuels operated stmultaneously
the average of af, with 72 and / fixed. over all members of
the group, is the ensemble-average correlation. The equa-
tions that follow, from the theory of random functions, refer
solely to ensemble averages, but space averages are desired
in practical applications.  The ergodic hypothesis of proba-
bility theory cquates the space average to the ensemble
average provided that, at any instant, the disturbanee fields
a and 3 are stationary random funetions of position; that is,
the disturbance fields are spatially homogeneous.

In what follows, the term “cross-correlation” will be ap-
plied for a#B, the term “self-correlation.” or simply
“correlation,” for a=8.

Correlation and power spectra. -The cross-correlation
af (8) (like a or 8, indvidually : see eq. (12)) may be ex-

N 4
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pressed by means of the Fourier integral as a <spectrum of
plane sine waves:

;Tj(éi rr“’flad]fﬂi i1
where {ag] 15 a funetion of & and ok s an abbrevisntion for
dh kb The differential o Sag)dk may be regarded as
the contribution to the correlation made by spectrm cony
ponents with wave number between £ oand & - dl The
function |ag] ts ealled the “speetral density” when o 30 the
“eross-speetral density” when a3 eef. 110 The array of
nine spectral densities signified by ag] when o and 3 are
hmited to mean w, r, or e is the Uspectral tensor™ of the
(The

corresponding array of the nite veloeity correlations ag €

veloceity field and is commondy written as Uy, of &,
ix the “correlation tensor,” commonly written as [0 1§10

Equation (131 inclhudes as o special ease the self-correlation
or mean-stpiare refation

(_!_" r[(uxlflk.

H o« were a velocity component say i,

where &0 Lid
then o would be
twice the space-average Kinelic energy per anit mass associ-
ated with u.
energy density (per unit mass, per anit wave number,

The specteal density Jaw] ix in this case an
]"l”‘
stmilar reasons, where speetea of the Kind defined by equation
(14) have oceurred in physies (e g in the harmonie analy<is
of radio noisey, they have generally been called energy.
INTensity, or power speetra.

Correlation spectrum in terms of amplitude spectra.
The rather analogous forms of equations (12 and (131 are
of interest. Equation (12) expresses the spectram of the
amplitude of the fluctuating quantity a; this may be terned
an  amplitude  spectrum. Equation (13) the
speetrnm of the correlation of « with 8; thiz has been termed
a correlation spectrum. The complex magmuude d7 k0 of
the amplitude spectrum fluctuates i an apparently random
manner as & is varied (refs. 10 and 120, The magoitude

[ask of the correlation spectrum. on the other hand, varies

CXPresses

smoothly with £, since the correlation s a smoothed or
averaged quantity (ref. 120, The amplitnde speetrnm gives
no direct information concerning averaged (1. e,

properties of the disturbance ficld, whiieas the correlition

statistieal)

speetrum leads divectly to expressions for correlations and
mean-sgtiare values (see cg=. G3oand (41, One-dimensional
speetra and seales of turbulence can also he determined
(e. g rel. 14).

It would be desirable to formulate the shock-turbulenee
interaction problem directly in terms of correlation spectra,
but formidable difficulties stand in the way. [t has been
simpler to start with the shoek interaction of a single shear
wave, which deals with amplitude speetra, and to infer from
this the changes in the correlation speetra. The whole
procedure depends on the following relation (refs. 10 and 12)
which conneets the two kinds of speetra, namely,

I¢x13|l/é_‘——"l/l,f(]l‘)tlz,g(_ﬁ_') (13)
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where dZ(k) 15 associated with the wave-number range
between & and k-~ dk, and the bar represents the ensemble
avergge.,  This relation s fundamental to the speetrum
analysis of the present paper.  Its significance is thiss the
single-wave analvsis (summarized in an earher section) pro-
vided the change in amplitude of an individual spectrum
wave in the form dZ, ~dZ,. say. and similarly, /75 -dZ.;
cquation (15 provides the means for determining therefrom
the corresponding change in the spectral density: [o8] -{a’8°]

INHOMOGENEOUS FIELDS

The specteal representation of a spatially homogeneous
random field is given by equation (12y:

olr) - ‘ ALk

A corresponding possible representation of an inhomogeneous
field is

aln r4"~'4lz,,(A-.£) (16

where dZ, now depends on position: the soumd fiekd hehind
the shoek s of this character. The following speetral
analvsis of such inhomogencous fields s a development of
Moval’s treatment of homogencous fields (ref. 107,

Let ey and gt be inhomogencous fiekds

als) "l TV AT WY 1o
3 - ‘,'“f‘,/zdu_-'_;» s

where equation (17) 1= an alternate form of equation (16).
The correlation of « and g for fixed positions  and 77, re-
speetively, ean be formed by taking the ensemble average
of their produet:

A DIBIEN = ” R R Al B VA (1)

The operations of integration and averaging commute, so the
averaging bar may be regarded as placed over the dZ's alone
on the right side,

Equation (19) could immediately be simplitied if the fields
alr) and 8(r") were homogeneous; in that easc the important
relation

AZX K A7 5(k") - o) dhe b’ 8(h"— b 20
w h('l'(‘
§0h"— k) =0 for &’ =k
o for k' -k
and

.o

J S — Kk =1

would hold (ref. 10), according to the spectral theory of
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random functions.  The simplification can sl be achieved
by replacing  the inhomogencons fields by “equivalemt”
homagencous fields that mateh, respectively . at the poins
2 oand 20 This ix accomplished by freezing dZ%ik oo
equation (17 at the value 425k 21 while allowing s 10 vary
in the exponemtinl, and correspondingly freezing J7, m
equation (18,

When applied 1o the so-defined eqmivalent homogeneons
fields, ecquation (200 reads

ALSk DV IZ0h 5 ek b sk b E

where the = over {ad] signities the functional depeadence on
- - . - . . .
sand r. Upon sthstitution o cquation P and nneara-

a

. . 4 a
tionn over & there results. with § =2 7,

al PR’

Jl"'éludltli' 22

The speetrud density lag] ean be evabited by mtesrating
equation (215 over &

lagdldh 75k Tod ik 2 -
where the integral property of the a-funciion,
J‘ FNsk Rk fi

has heen used, with fO£1 an arbiteary funetion,

Equations (22) and (235 for inhomogenrons fields are of the
same form ax their counterpartz, equations (130 and (15,
respectively, for homogenecous fields.  In the homogeneous
case the dZ's are funetions of position, amd equation {23
implies a corresponding dependence of {agl on position
Morvover, the correlation )y 303 depends on F oand 37
separately as well as on their separation £

CORRELATION OF TWO-DIMENSIONAL FIELD WITH THREE-
DIMENSIONAL FIELD

The local perturbations of the shock face from the mean
(reoay) plane constitute a homogencous  two-dimensiona
field of the general form

B - ] SRR Wk 240

where o) has been fixed at the value 7. 1t may be desired
to correlate such a field locally with a three-dimensional fiekd
(e. g., the turbulent velocity field).

(24) is rewritten in the form

B(i/) J LA [’ ~ ki1 ll“‘g(k; k;)]

Now, if r; in ¢ %1 is fixed at the value 7;. 8 will be general-
ized to a three-dimensional field (elementary wave number
k) that matches the original two-dimensional field in its

To this end, equation
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plane of definition », 7.
written

This “equivalent™ field mayv be

Bl - J TRV A1 g
where
A7k O AW k)

Equation (251 is of the form of a three-dimensional homo-
gencous field and may be used in place of (24) in equations
(13 and (15) to provide the correlation of g with any three-
dimensional homogeneous licld in the common plane », 7.

INTERACTION OF SPECTRUM OF SHEAR WAVES
TURBULENCE.

SHOCK

The interaction of a single shear wave with a shoek has
been diseussed in detail. With this as the basis, the statistical
behavior of a spectrum of shear waves representing turbu-
lenee will now be derived: the procedure will make use of
the spectral-aanalyvsis relations of the last section. The
problem is formulated ax follows: given the spectra and
henee correlutions and mean-square values) associated with
the turbulenee convected into the shock. to caleulate there-
from the speetra, correlations, and
associated  with the turbulence, entropy  spottiness, and
noise in the flow downstream of the shock.

mean-square  values

DIAGONAL TERMS OF VELOCITY NPECTRUM TENSNOR

The respeetive spectrum tensors for the turbulence and
noise downstream of the shoek eaeh consist of nine elemients:
of these the three dingonal terms are most important since
thiey lead to the mean squares of the velocity components.
The relatively simple werivation of the first diagonal term
atdd the sum of the second and third will be carried out in
the present section.  The derivation of the complete tensor
is carried out in appendix B by a more formal procedure.

Turbulence field. The shock interaction effects have
been expressed in terms of relations between wave amplitudes
on oppostte sides of the shock fegs. (9 and (100, Cor-
responding relations between spectend densities (elements)
on the two sides can be obtained by use of equation (17).
Some preliminary manipulation is required:  thus multiply
both sides of equations (10) by their complex conjugates,
and add the last two; there results

VA VARV ATV (24)
IV ATVAST VAR VAR W VRV AR VATV 27

But by geometry (fig. 2),
dZ,=d/, tan g

dZ*==dZ* tan ¢

S Inpeet eaprassions for the spectrn dawistrearn of the shoek may e desired, free of The tneguad volurne ol - wents db, gk, or di-

by b’ then sthes dk i shonthawst for digdbadly, and ~imitarly for db7) the atio dhdt’ may be interpreted as e Vaeobian csay 5 for the trunsformation from L to d°
T -

Stmtlarly, inoeq. () divide by di” and interpreet didb as the Jacobian say J7) for the teansformation from ko B

1

|

AND THE GENERATION OF NOISE 7
and also. by the coordinate transformation -~
VATV ATV ATV AT VARV 4 V8
Thus. equation 271 becotes
TV VAT VARV AR (RE IR I VA Y AT VAN VAT VANV &
N
Application of equation (151 vields
[’V k" N an) ddk
Tt B VATl 7/ S N R PO TEN B V7RV Y G PR R PO Y &
24

These are the desired sxpressions velating digonat clemencs
of the spectrum tensors of the turbulence on opposite <ides

of the shoek,

Noise field. [If operations similar to those of the last
section are applied to cquations (11 there resnli-
lu”l/”‘:/i” x "|_uu§:/£
A

I PR B S AP "
These equations relate the dimzonal elements of the <pectrun
tensor of (he noise generated belind the <hoek ta the longi-
tudinal specteal density of the nitial turbalenee abead of

the shoek . ?
MEAN-SQUARE VELOCITY COMPONENTS

Turbulence field.
follow direetly from integration of the speetral density i~ee
eq. (T

The mean-square velocity components
Integration of both sides of cquations 1249 vields

e , N )l

w4y ’ CY D anteundk

Thus. the mean-square velocity components behiind  the
shoek (primed values) are given in terius of those ahead of
the shoek, the single-wave transfer functions A and 17 anid
the longitudinal spectral density lan] of the mital tarbulenee,
Note that X and ¥V oare funetions of & in terms of # (see
appendix A

Noise field. 300
vields the mean-square velocity components in the noise

field:

Similarly, integration of  equations

THERS ‘ x | dk

e i ’ T tan? Ofuu| dk

Here again, x and T are functions of £ i terms of 4.

This tiesy be etTected e, 20 be dice fiie both sedes

Upon evatuation

Upon eviluation

i g o8
megst ¢ o'’
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MEANSOUUARE PRESSE RY

Thos tnsteorder pressine fichd s ossoemtes) solely withe the
voise fiekd thee presaire field associted with the maebalenes
~ ol the ccomd arder i veloeity and mny be neglected
osgutrison The spectral density of the noise pressure
can b pelated o the speetrad density of the longitadinnl
elocity o the sl suchadenee e relation s obtained by
antltiplyime both stdes of the sevoned of equations (7))
thew comples conpugate < averaginge, ated wpplyving equation

A0t eneh <ade

TR U/ S A VI 0/ 5 (B}
Pl anteatation of hoth ~ades of cquation G5 vehls the
mwean-sqare plessiize i the notse teld s

s ' 1" “{uallt i

MEAN-NQUARE TEMPERATURY.

Flo- veraperuture perturbatims i the noise fickd, bhecatise
of the asentropie relntion, wre equal to oy Dy tines the
pessure perturhations: s, the relations corresponding 1o
cipaions i3 and S8y be written down at onee

The temperatare perturbations associnted with the cutrops
spottiness behd the shoek require a0 separate snalysis.
The ~pectral denssty of the temperature perturbations enn
e evalted by operating on cqguation (5 in the now-
Vanulue manner owee remarhs preveding eq. G850 the vesalt
-

EI'Y‘II’L" T Arn|olk (BT

The mtegral relution obtamed from equation €35 18

= ! T | waidl: [

Thi~ cquation evaluates, for the regton behind the <hoek,
that part of the mean-square temperature spottiness as<o-
cited with the entropy spottiness,

MEAN-SQUARE DENNITY

L~ unneressary 1o write down special expressions for the
onsity field: the respretive contributions of entropy spotti-
ness atd noise to the density perturbations are related to
thie careesponding temperature amd pressure pertuchations
by p’ " and p” 5y, wecording to the <mali-perturbation
form of the cquation of state,

CORREEATIONS NOT JOINTLY INVOLVING TURBULENCE AND NOISE

Attempts at simplification. If the spectrul  density
loglth) is known, the corresponding two-point correlation
ad{) enn. in principle. be obtained by means of cqoation

5P boes) pinostine ekl assn st o watls ferbabane, alindigh weak by actode niamnie stasdanils, may e sirong by somintie stamdands
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chbe Dt fushion, Foe esatple, e Lo
vorrelthion i the tarbdenee betind 1he
expresseds with use of cipaatum 20 s

(g l N ey ol
‘ N qwaie 4L

(Sev lootwte 2 p 7, for ~tizindieattiee « £
Fither of the forms G35 or GING iin
beennse of the admixtuee of £oand L7 m the
frenl as ordinarily. most cimply expressd as
However it is possible te fimd o tived veete
the rvelation L7287 [

_é thas wives the
relstion

gt [N wag it

where & wmg], & &0 & 2 Inoalt the
correlations involving  properties of  the
entropy <spottiness  hehind  the <haek. w?
velocity component~. temperature, densny,
transformation [°.8° LE van e
eaponential.

The physieal interpretation of the relat
£ s thist il two tluid particles opsteenin of
vertor distunee £ upart, after convection 1h
they will be a vector distanee £7 apnrr. 'u
“hoxT of turbulent thid of edees &5 5 Wi
on passing through the shock and will viery
a <horter box of wl;:'\' f; f % Thetefore,
effect expresses correlations in the spaee do
<hoek in terms of equivalent correlations

nuel.- ¢

up=tream of the shoek

The analog of cquation (37 for the coreel
ties of the noise field involves L2877 an s
rather thun £°-2°. Here ne great simplifiea
be pessiple in geveral:! there exists 2o fis
<atisfies the relation L7877 £& This Ia
nature of the tnsformation from £ 10 £
components of the two veeters are not in iy
but instend vary with the inelination of £
coordinate eompression £ -£° that works fo
field (it expresses the change in dimensions «
conveeted through the shockr will not wor
liekd.  An exception ovcars when £ is chose
shoek plane (radial direction. 5, 08 The
and sinee &7 &, it follows that for this ease &

The integral for a particular correlation
<iderably when € (or £ or £7°1 is taken in the

e Turbubeine oo p .

Conurtled st s stationary irraphatie, i <Teong fesponise ein e alserve], the e nomenod ethed > paawed 17 The noise wnsation pewdueed By wind
pivaummably ashnikar etfeet asaoctated with furtailent separiion of the flow
o8 parhial smplifieation s L S0l ko,
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of the coordinate axes, sav r,.  In the former case, k€
becomes ki&; and the exponentinl can be replaced by cos
k&, sinee the imaginary sine component will integrate out.
Similarly -8 can be replaced by cos &8,

Cross-correlations. —The phase angles of the
funetions must be considered in formulating cross-correlations.
For example, the correlation of local temperature with
longitudinal velocity in the entropy and turbulence fields
behind the shocek is readily obtained as

transfer

)= f( T (X e b

. l TN &5 L] dk

The integrand. except for the exponential, 15 even i the
wave inclination 6; the phase angles 8, and 67 (in the notation
nsed) are odd in 8 (both properties ean be inferred from the
svinmetry of the wavesrefraction process with respect to 8.
Aceordingly. the imaginary sine term in the exponential will
integrate ont, and

’r'—u"(()):-—J TN cos (8,~ ) nuldk (40)

The corresponding relations for other eross-correlations can
be written down by analogy.
CORRELATIONS BETWEEN TURBULENCE AND NOISE

Cross-correlations between the turbulence and noise fields
require a special treatment, partly beeause of the inhomo-
geneity of the noise field. and partly beeause of the non-
paralielism of the physieally associated waves.  In what
follows, an expression for the correlation of noise pressure
with longitudinal turbulent veloeity will be derived. From
this the qualitative variation of the correlation with distance
downstream of the shock will be inferred.

The refracted shear wave (~ &) and pressure wave (~4")
associated in an elementary interaction process have different
inchinations (fig. %), As a consequence, the formal applica-
tion of the relations given in the section SPECTRAL
ANALYSIS OF RANDOM FIELDS leads to difficulty: the
spectral density of any correlation appears to vanish accord-
ing to equation (21).  Actually, the formulas are inapplica-
ble to correlations involving mutually inclined waves; this
will be brought out clearly in the following devivation of the
applicable formulas.  For simplicity the derivation will be
limited to the correlation of turbulent longitudinal veloeity
i’ at point g with noise presswre p’” at point 2} extensions
to other cases are straightforward.  The derivation will first
be carried out as theugh the noise field were homogencous
{no variation of transfer function 2 with r), and then will
be ndapted to take account of the actual inhomogeneity.

The respective Fourier integrals may be written

wigy= fer iz = [ereizg)

|

I‘”(i.”) 3 ’ (IA;.'»I"IZ’J(E/I)

The correlation may be formed as the ensemble average of
’

the produet o' p’":

where the bar has been taken inswde the integral, sinee the
ILquation

g A

operations of averaging and integration conumute,
(7) and the first of cquations () may be used to <implify
the right side:

dZEWAZ k) = NP dd Z%kd 2.0 by 42

A L)
where £ bears the same relation to & as &7 does ta k. By
virtue of equation (201, equation (425 reduces further 1o

AZAE W28 - N* ok~ kidy ok
if the fields are homogencous.  Substitution of this relation

A
into equation (413 and integration over & result in

'1'(-1")])”(_{”)“1 (,l,'):nx" k’.I"‘\'*(E)l,‘l‘_.)[u”I’[k ‘43)
. . . . 9 o
sinee the §-function eliminates all vatues of £ bhut £ and

A
similarly all values of £ but £, Finally, the cquation may
be generalized to apply 1o the actual inhomogeneous pressure
field, according to equation (231 and the discussion preceding
it, by writing > (4 as £ (k. ) and using the value appro-
priate to r, .

Equation (43 s the general relation for the two-point
correlation of longitudinal turbulent veloeity " with noise
pressure p’’. The striking feature = the ditference of the
exponential term from those in equations (13 and 22); this
constitutes an a posteriori demonstration of the inapplica-
bility of those equations.?

If the turbulent veloeity and noise pressure are correlated
loeally (7 —=r"), the expression simplifies to

Wpa)

f,,"k' R Xk, ey dk (34)
since &)=k, A= Directly at the shock, » =0 and the
right side simplifies further: the mtegration can readily be
carried out for isotropie turbulence, and a nonvanishing
correlation will be obtained.  Behind the shoek (o] >0),
the exponential oscillates sinusoulally; for a given wave
inclination the behavior is essentially like cos Chrl, where
Cis u constant.  For o] very small. the cosine is near vnity
over the significant range of & (the range for which [n]>0).
Hence the correlation is only slightly diminished at small
distances behind the shock. At somewhat greater distances
the oseillatory nature of the cosine begins 1o be felt before
L] dies out, and the correlution falls oflf noticeably. Finally,
at very large distances, cos Ckr{ oscillates over a great

§ However, eq. (44) is equivalent to that which would result from eq. (13) or (22) upon replacing the pressure wave by a loeally equivalent shear wave purallel to the actual shear wave, as

discussed in ref. 8,
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many periods as & covers its important range, and the plus | The corresponding element of equation (48) is

and minus contributions to the integral cancel cach other;
thus at these large distances behind the shock the noise-
turbulence correlation falls to zero.

INTERACTION OF TURBULENCE WITH AN OBLIQUE SHOCK

All the foregoing analysis may be applied to an oblique
shock by treating the latter as a normal shock with a super-
posed cross-velocity which is to be ignored.  The coordinate
svstem should be oriented so that the r-axis is normal to
the oblique-shock front (on the downstream side), and the
ro- and ry-axes lie in the shock front with the s-axis in the
plane of the stream-velocity vector and the x-axis.  The
component of the stream velocity in the r-direction is the
U veloeity of the equivalent normal shock.  From here on
the analysis for the normal-shock case may be applied.

Ordinarily the turbulence spectrum tensor will be defined
{us &, sav) in a system oy, oy, o5 with the ri-axis alined
with stream direetion, and it will be neecessary to transform
@/, to the new svstem oy, v, s, H the shock angle of the
oblique shock is ¢, the primed and unprimed axes are related
according to the following scheme:

I, I T
o ru=sin ¢ riz=4 T=C08 ¢ (45)
x rn=u =1 T23=0
2
r; Fii=—pos ¥ riz=0 ru=sin ¢
where ry; s the costne of the angle between o) and x;. The
transformation is etfected by the formula
7 v
q>mn:/'(mrjnq)x‘j ("”))

where the repeated indices ¢ and j are to be summed over.
The diagonal terms in the result are relatively simple:

&, =d,, sin®Y+d;; cosiY—sin ¢ cos ¢ (b;+—;)

SN (47)

$y=—b;, cos’Y-—dy; sin®+sin ¢ cos ¥ (Pr3+by,)

The coordinate transformation whereby @], goes over
into &n, may be illustrated most simply by choosing ®, to
correspond to isotropie turbulence; in that case, ®/, has the

general form (e. g., ref. 12)

&= F(k') (k61— kiks) (18)

Substitution into the first of equations (47) vields

b= F&') (B kD) sin?¢3- (2 -+ k53 cos® @+ 2k ky sin ¢ cos
=F(k') [k + (ks sin Y+ k] cos ¢)| (49)

In the preceding equations, &, k;, ky are the components
of the wave-number vector in the primed coordinate system;
these are related to the components &y, k. k3 in the unprimed
system precisely as £, x}, ri are related to ry, r2, 1y in equa-
tions (45). As a consequence, equation (49) can be readily
shown to reduce to

<P”=I"(k) ["'3‘*"‘%] (50)

Py = FOO) (R kP (31)
Thus the tensor elements @, and @;, have the same funetional
frm, refleeting the isotropie property of invarianee under
otation of coordinates.  This particular example of the
coordinate rotation apphed to isotropie turbulence is trivial
in that the result could have been written down in advanee
without recourse to the transformation ecquation.  Never-
theless, it Hustrates the formal application of the trans-
formation and, in addition, serves as a check on the first of
ecquations (47) in vielding the required invariance.

CALCULATIONS

Numerical calculations have been earried out for tlows
in which the turbulenee ineident on the shock is (1) isotropie
and (2) strongly axisvmmetrie.  An account of the iso-
tropic case follows.  The more complicated axisvmmetrie
case adds little of interest and is therefore left to appendix €.

MEAN-SQUARE VELOCITY COMPONENTS IN TURBULENCE FIELD

The equations that jointly relate the upstream (unprimed)
and downstream (primed) mean squares are

F::r[uu] dk (52)
= f §2C0 O ) dk (53)
cox® 6 -
. n‘_’-:[ Y s 0)_.,2"1- o [ 2] df o 154)
. cos? =

The first of these i= just equation {14) with a==u; the last two
result from substituting into equations (31) the expressions
for 'XJ? and 1Y}* from appendix A, So far the equations
have not been specialized to isotropie mitial turbulenee.

When the initial tur, ulence is isotropie (i. e., has spherieal
svmmetry), its longittdinal spectral density {wvu] has the
general form (e. g.. vef. 12, eq. (3.4.12))

lu, kFF (k) cos™d (H3)
where F(k) is an arbitrar, function of k. (F(k) will ulti-
mately eancel out in forming ratios.) It is appropriate,
then, 10 go over to a form of spherieal polar coordinates:

ky=—ksin?
ko keoscos ¢ (56)
=k cos 8 sin ¢
dk=k cos 0 dk dyp d8
Equations (32) and (53} mayv now be written

— b 2r L

u’:‘lJ F (k) (lkf :Lpf cos® 8 (57)
n ¢ [

.0 2 "/2
u.”_—.'.lj FF k) l]kfz dwj 1812¢cosd cosddé  (58)
0 L] o

where the factor of 2 and the limit #/2 result from the sym-
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metry in 8.

Division of equation (58) by (57) vields, since

j “c0s% do=.. 3,
i)

FF:;JO', S:2 08?8’ cos 946 (59

[n a rather similar fashion, equation (36) vields
—-2 (] +£"2‘S *sin®d’ cos 8 (10) (60)
where use has been made of the initial isotropy wW?=prF=u?,

and final axisvmmetry 772=2%"%,

The transfer function § in equations (39) and (60) is a
measure of the amplification of a single spectral component
in passing through the shoek: the associated phase angle is
8, (not relevant here). S, like the other transfer functions, is
a complicated function of 8 that does not lend itself to ana-
Ixtic integration. A numerical tabulation of S and 8, against
6 is given in tables T (¢) to (k) for the respective Mach num-
bers of 1,10, 1.25, 1.5, 2.0, 2.5, 3.0, 4.0, 6.0, and «; these
tables were used in conjunction with numerical integration
to evaluate equations (37) and (38). (S reduces to 1 for all
fat M=1)

MEAN-SQUARE TEMPERATURE IN ENTROPY FIELD

The derivation of 727%2 is parallel to that of %™
tion (33) being replaced by equation (36).
(analog of ¢q. (59)):

3, equa-
Thv l‘(\\u]t I8

. .2
= 3"

= u'j TP cos 0 de 61}
0
The transfer function T and the associated phase angle
67 (not relevant here) are tabulated against 6 in tables I (¢)
to (k) for the various Mach numbers. The tabulated values
used in the numerical integration of equation (61).

MEAN-SQUARE PRESSURE IN NOISE FIELD

Beeause of the similarity of equations (34) and (36), the
mean-square pressure can be written down by inspection of
equation (61):
(62)

=0 TJ " P2 cost 0 do
- 1]

The integration has been performed numerically with use

of the definition of P in terms of 11 (appendix A) and the

values of IT against 8 tabulated in tables 1 (a) to (i), appro-

priate to r= o, Thus, the integral as evaluated refers to the

asvmptotic mean-square pressure far behind the shock.

RESULTS AND DISCUSSION

The results of the calculations of the preceding section are
shown in figure 4 for Mach numbers of 1 to «; this figure
evaluates the disturbance field—both turbulence and noise— -
downstream of a shock when isotropic turbulence is con-
vected into the shock. The velocity perturbations, on a

root-mean-square basis, are in percent of stream veloeity
ahead of the shock (thus the basis is the same on both sides
of the shock); the temperature and pressure perturbations
are in percent of ambient belind the shoek® The velocity
curves refer solely to the turbulence component, the tem-
perature curve to the entropy component, and the pressure
curve to the noise component of the field behind the shock.

The curves show that isotropic turbulence is somewhat
transformed in passing through a shoek, the longitudinal
and lateral components no longer being equal: the selective
effect is, however, mild compared with that of screens or
wind-tunnel contractions (cf., e. g, ref. 14). In addition,
although the incident flow was assumed isothermal and isen-
tropic, the downstream flow possesses an entropy spottiness,
which 1s a “frozen™ convected pattern like the turbulence.
The root-mean-square temperature associnted with the en-
tropy spottiness, in pereent of ambient, is seen to he not
much less than the root-mean-square veloeity of the initial
turbulence, in percent of free stream.

In the theory the entropy spottiness is spatially correlated
with the longitudinal component of the turbulent veloeiiy
evervwhere behind the shock.  In practice it is to beex-
pected that the correlation will soon be destroved by eddy
intermixing as the combined fields are convected down-
stream from the shock: this intermixing, heing second order,
is neglected in the linear theory.  Directly at the shock, the
noise pressure likewise is correlated with the longitudinal
component of the turbulent veloeity.  According o the
carlier qualitative examination, however, this correlation
falls off with distance behind the shoek, reaching zero far
back.

The pecualiar hump in the curve of root-mean-square
noise pressure against Mach number just above M=1 has
commanded special attention.  Tu order to delineate the
shape accurately, additional numerical computations (be-
voud those for the other curves) were made at M=1.05 and
M=1.01. These were supplemented by an analvtieal study
which established that the curve varies like (MW= 1)V as M-»1
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Ficrre 4. Disturbances produced behind shock by interaction with
isotropic turbulence.  Turbulent intensity just before shock, 0.1
pereent.  Root-mean-square velocity in percent of initial stream

velocity ahead of shoek: root-mean-square temperature and pressure
in percent of ambient behind shock.

* For the circumstaneos of flus. 1 and 3, namely, longitudinal component of Initial turbujence equals 0.t porcomohtromn velority, the dimensinnal gquaatities plotted are as follows in terms
o the nondimensional aymbols used In the analysis: longitu-linal velocity. pereent initial stream veloclty, 0.1 V33 lateral velocity, percont initiat stream velocity, 0.1 \ #¥/u% temperature,

P reent amblent, 0.1 v mr”/u’ pressure, pereent ambient, 0.1 \/mp"‘/u’




w—-

12 REPORT 1233  NATIONAL ADVISORY COMMITIEE FOR AERONAUTICN

s 16 R S A ' LA ;

g v ongitudinal velocity ( 4 T‘gg‘é‘g(’;‘ge.

3 ] L ‘ Turbu- |

5 12 sy } [ boo. :"n? 4 140 : . -

E . Lgfero&elocny/ 36.1 8

2 T

&o 2

® @

8 | 5

3 Z

: @

:04["‘ =

i 2

o S

& o i
3 L} 80- = .
Speed ratio, m [ 2 3 4 s I3

6 lg . 3;0 o . . \ Speed rotio, m
. : : ® o125 15 2 25 3 a é ©

Initial Mach number, M

F1aURE 3.- - Disturbances produced behind shock by interaction with
strongly axisymmetrie turbudence,  Longitudinal intensity, 0.1 per-
cent: lateral intensity is 3.61 percent juse before shock.  Root-mican-
square veloeity in pereent of initial stream velocity; root-inean-square
temperature and pressure in percent of ambient.

from above, approaching the limiting value of zero. The
precise asymptotic expression is

{573 Q12
014, M " _ . E,) 01/4 Iyt i
\ o 0.1 5=ilz) 2 (M—-1) (6:3)

where the omitted next-higher-order term is O[(MW/—1)*"].

Figure 1 applies when isotropic turbulence flows into the
shock. Figure 5 (prepared from caleulations desceribed in
appendix B) applies when strongly axisvimmetrie turbulence
flows into the shock; the specifications for the turbulence
were taken from theoretical calculations of the medifications
in initially isotropic turbulence that had passed through
damping sereens and a wind-tunnel contraction (ref. 10, four
screens, A=2, M=1.5). The calculated deviation from
isotropy is based on idealized conditions and is probably an
extreme upper limit to what might be encountered in a wind-
tunnel test section. The longitudinal component of the
incident turbulence is the same for both figures - namely,
0.1 percent of free-stream speed--but the lateral component
is 3.61 percent for figure 5 against 0.1 pereent (isotropie) for
figure 4. Despite the wide disparity in the lateral compo-
nent, however, comparison of the two figures shows no great
change in the curves. Evidently, the lateral component of
the turbulence flowing into the shock has little effeet, and the
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(a) Ambient pressure downstream of shock, 1 atmospuere,

Figvre 6. - Noise generated by shock-turbulenee interaction (isotropie
turbulence).

inihal Mach numper, A4

(h) Stagnation pressure upstream of shock, T atmosphere

Frovre 6. Concloded.  Noise generated by shock-turbulence inter-
action tisotropic turbulence).

intensity of the remainder of the disturbanee field behind vhe
shock depends almost solely on the longitudinal component,
regardless of the degree of anisotropy.  The shock-indueed
change in the lateral component itself, however, depends on
the deviation from isotropy, being appreciable for the iso-
tropic case and quite neghgible for the extrente axisymmetric
case,

The noise generated by the shock-turbulenee interaction
is measured by the curves of root-mean-square pressure,
This is best indicated by use of an acoustic scale as i fignre
6. Here the noise pressure level is plotted in decibels above
the standard reference base of 0.000204 microbar for several
levels of initial isotropic turbulence.  According to the pre-
ceding paragraph there would be little difference for strongly
axisyvmmetric turbulence of the same longitudinal intensities;
the difference between figures 4 and 5 corresponds to no
more than 4 decibels at the Mach numbers (1.5, 3, and )
for which there are comparable data.

The reference static pressure bhehind the shoek is different
for the two parts of figure 6. In figure 6 the ambient
pressure behind the shock is constant with Mach number
(I atm): this situation may be approximated in an exit jet
of an aireraft in flight. In figure 6(b) the stagnation pres-
sure ahead of the shock is constant at 1 atmosphiere, so that
the static pressure behind the shock diminishes markediy
with increasing Mach number; this situation is roughly
characteristic of many wind-tunnel flows. It is seen that
even at a longitudinal component of turbulence of 0.01 per-
cent, the noise level is severe; and at 1 pereent the noise
level exceeds 130 decibels, which is of the order of the
threshold of pain, over much of the Mach number range.

These remarks all refer to the asvmptotic nojse level an
“infinite” distance behind the shock, since the attenuating
part of the pressure waves has been neglected (in practice,
this distance may be taken to be twice the longest significant
wave length).  For an initial Mach number of 1.5, the noise
level is predicted to be some 17 decibels greater directly
behind the shock where the attenuation is nil.

The local pressure level (proportional to the energy density)
of the noise field in the region of shock-turbulence interaction
is one aspect of the noise problem. Lighthill (ref. 3) has
investigated another aspeet, namely, the flux of acoustic
energy radiated from the interaction region as a result of
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the convection of any specified volume of turbulence through
a weak plane shock segment (1 <M< 1.3); the turbulenee
need not be homogeneous. The two quantities, energy
density and flux of energy, are not simply related unless the
wave pattern is simple, for example, parallel plane waves
or concentrie spherical waves.

CONCLUDING REMARKS

The quantitative effects of the interaction of a convected
homogeneous field of turbulence with an extended plane
shock have been caleulated, including the pressure level of
the noise generated in the process.  The assumed conditions
are closely approximated in a supersonic wind tunnel or duct
with a normal shock: the shock, together with its images
in the walls (if the latter arve nearly paraliel), behaves sub-
stantially like an extended plane shock for the purposes of
the analysis.  The approximation is still quite good for plane
oblique shocks for that portion of the incident turbulence
whose eddies are small compared with the tunnel diameter

z
f
f
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(spectral wave length < tunnel diam.), and probably fairl
good even without this restriction ou eddy size.

The propulsive free jet emitted by a turbojet, ram-jet, or
rocket engine is turbulent, but the turbulence is far from
homogeneous.  In addition, only local segments of the shock
structure that may oceur aft of the nozzle can be considered
sensibly plane.  The shock-interaction noise generated by
turbulent eddies smaller than such shock segments can per-
haps be estimated from the curves presented herein. Exii-
mates of this sort refer to the sound pressure level within
the jet and nearby outside: they provide no direct informa-
tion on the sound pressure level far from the jet as a function

Ustance and direction, or on the total acoustie power
ed by the jet.

Lewis Fricar Prorvr rox Lanoratory
NATIONAL ADVIsomy COMMITTEE FOR AERONAUTICS
CreveLaNd, Outo, June 3, 1954

APPENDIX A
SYMBOLS
The following symbols are used in this report: (In appendix m ratio of speeds before and after shock,
B some alternate symbols are defined and used in eertain o v+ DA
parts.) (Y1)
a function defined in ref. 2 N number of damping sereens
a* critical speed of sound A transfer function for soumd waves  {pressure
b function defined in ref. 2 I effecty,
Fik) arbitrary funection of & o2V T see 6 see 8

4o’ sin? O+ cos* ©

(G(6) sereen-cffeet funetion, G(0)= 4 5in? 04 42 cos2 O
e comtraction-effect funetion,
1? 1
”(9)*7.‘ (e Sin® O+ cos? 0)?
g’ Jacobian of transformation from
. o o dk 1
k to ll_ oS _411",:}77.
J” Jacobian of transformation from k to k.
Jr— dk _ cos? @7 o
dk”  m cos* §' 08"
K sereen coofficient, K= | Prossure drop
dypamic pressure
k amplitude of k: =B+ k=4 k.
k, radial component of k, k.= —k, cot 8
k wave-number vector, k=k,, k.. k. also,
k==ki k., 0 in evlindrical coor intes
dk volume element in wave-number space,
dk = dkdkyll,
/ . ) ~, _ final stream speed
) contraction parameter, /= ... - -
initial stream speed
/, contraction parameter,
__final stream-tube width
*“initial stream-tube width
M Mach number upstream of normal shock
M, Mach number downstream of normal shock

(Y+ym—(y—1)
pressure perturbation

P mean statie pressure

B8 perturbation velocity correlation tensor (special
case of E(g))

ry, direction cosines

S transfer funetion for shear waves, tabulated in
tables I(¢) to (k) (eq. in ref. 2y
2Av—1)m—1)

T i [ D — (v 1)] vio tan 6—1)* (b tan 8)*,
0<0< ]

T Transfer function for entropy waves (tempera-
ture offect) T="Te'*T

U stream velocity downstream of shock

[ stream veloeity upstream of shock

u, v, nondimensional disturbance velocity compon-
ents in directions ry, 1, 13, respectively;

u p petOmponents of velocity perturbation

T critical speed of sound o*

v cross-stream velocity (sketeh (e

r, disturbanece veloecity component in radial di-
rection/a*

o disturbance velocity component in e-direction a*

W resultant of {7 and V’

Wy (complex) wave amplitude in two-dimensional

field
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. . . L. eos e 0 critical value of 8 for which W speed of sound
A transfer function, \'— Se*- < I
cos 9 A wave-nimber veetor, & k. a a,
r POSILON Veetor, £— o= &y, 1y, 1y n sereen purameter, g boa, - K
. . . . sing v <erecn parameter, v - a,—a, N
} transfer function, ¥ - Setta ™, P , o
S g £ separation of two points. §= - r
dZ, (complex) wave amplitude associated with 11 function tabulated in table T (defined o ref. 2
dz. (complex) wave amplitude associated with « U transfer function for sound waves, [T - 115
Az, (complexy wave amplitude associnted with r, density perturbation
a. B may stand for w, row, p, )p. orr p mean density
, 121 - R . . P
. serecn parameter, o ;’z.-.:l K for K >1 ; temperatire pmtmlmlmn
— . . A . c mean temperature
aB(s) correlation of « and Bat a separation § @, (k) perturbation veloetty spectrum tensor (special
lad(h) Fourier transform of «8(8). interpreted as case of [aB)tkn
speetral density of o (0) ¢ common longitude angle of wave normals &, £
Vi A k7 in polar coordinates
S | , .
Bu \ cost o transfor function. x “((-()s @' —¢ Vg, s gy
. . . . X ransfer function, x 5
Itk perturbation veloeity spectrum tensor (special g cos 8
caxe of {aBlh) o .. ,
3 ratio of specific heats (taken as 1.4 T transfer funetion, T - U‘"‘”‘ ¢ ‘ H‘j'f“’” #
5, phase angle of T (eq. in vef. 2y s
5. phuase angle of X and V. tabulated in tables where
ey to (k) teq. in ref. 2) no 1,0<6<8,,
by vhase angle of T, tabulated in tables 1(e) to (K, r
, ! : s 0.4, <6<
T -
By-flzm“( ) )q(DSGS‘) .
cot §—a = acute angle between oblique shoek and upstreamn
. - ! { {
¢ contraction parameter, e= /37§ How direction
0 shear-wave inelination ahead of contraction, X .
/ ) Subseripts:
— —f "t
H=tan (J,, tan 0) a, B may stand for w, o popoor 7
T . . I - . D c 3 se coblaee a3
f shear-wave inclination ahead of shock (see fig. 33 Lgemen “"'.‘I“"”‘I for 1.2, m ;-l"-\( d ll” replace a and g
0 shear-wave inelination behind shock (see fig. 33, when ”'] rooare veplaced by e re-
6" =tan"'(m tan 9 spectively
n" sound-wave inelination behind shoels (see fig. 3y, Superseripts:
M tan g * . WX eonjuneate
—tan-! Y u<e<e., complex conjugatc
9" = 1~ ! refrac ted shear-entropy wave
- ”
_ T sound wave
' —cot™ '8, 0.,<0< .. S
2 A distinguishing mark

APPENDIX B

COMPLETE YELOCITY SPECTRUM TENSORS

The first and the sum of the second and third diagonal
terms of the spectrum tensors of the veloeity field behind the
shock are obtained in the text by use of a simplified approach.
Other terms are occasionally of interest; for example, the
separate values of the second and third diagonal terms
are needed for a deseription of anisotropie turbulence.  The
complete spectrum tensor for each field (turbulence and noise)
will be derived herein by a more comprehensive procedure.

Turbulence field. It will be convenient to replace the
symbols w, r,w by wy g uy, and to replace a and 8 by i, j,
which take on the values 1, 2, and 3 instead of u, r, and .
With this notation and the use of equations (8), equations
(10) can be transformed to

dZ, =X dZ,
dZ= Y - 1)dZ, cos ¢ 1+ dZy

dZy- Y- - WdZ, sin ¢ d7,
By introduetion of the geometrie relations (figs. 1 and 2y

dZ, —dZ, tan @

tan 0— — kb k,
(B1)
cos ¢ —kyok,

sin ¢= —hky'k,

all three equations may be represented by the single expres-
sion

l‘.a

l’Z: - .\’4”/.|6|,+[()';._ l)( '_k‘_,_, ) 1]Z| +4IZ,](I “51.’) (I;‘.))
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the complex congugates of the respective elements diazonally
opposite: that s, @ &7 and so forth.

It can be shown, by use of the continuy velation L@
A, 0 ummed over repeated indexy, that after some
reduction

(d’:'_'" 4':’::«"’)(" [‘ Y Lidy, ;‘:E+"’:; ’ d’ii] di

inagreement with the =econd of equations (24,
Noise field.

tons (11) may be represented by the single expression

With use of equations (B, the three equia-

bk,

e 1885

A7 - x d7.8,, T( )z b

:

where again the subseripts 10203 replace oo o ond 6,0 0
or 1 as before.  Starting with this equation, the <peetral
tensor 7, may be derived moa straightforward manner by w
procedure parallel to that leading from equation (1324 10
(B4). The rvesult is

ik,
g

oot 6.0

&, " <h”:/A_-{ X806, - T

A‘
/._‘ X Y8, 6,0k 8,00 a,,;A-,l} (Ba)

{"The valid range of this equation has been limited ton,, <

< “;( t—\' > tan 6,,)!).\' use of the simplifieation x % (*Y
X T, \\;lli:'l\ fails outside that range )

The expanded form of cquation (36) is
= X T kykoh
T *hiks

— T "A'T‘I-'_:A'_;

X X khds
T '.Afl_»ln
T kiks

xi%ky
Dk =y, 'zlé’ — X\ T Akahs
— X Tkt
The diagonal terms yield

WAk X by dk

(B, Dl dk” T ﬁ‘ by Ak

sinee M- A=k these ave in agreement with equations (300,

APPENDIX C

CALCULATIONS FOR AXISYMMETRIC INITIAL TURBULENCE

!
where
. i)
0y, - .
0, 151
Multiplication of the complex conjugate of equation (B2)
by the corvesponding equation with subseript j and by &)
vields, after averaging,
BAZXIZ, =k N 2 dZ) 78,,8,,4 (1 —8,)(0 —3,,) »
[k ok, Y =12 dZ, 2 RAZRZ,
bk k2 (V=YX AZRE7 4 b ke 200 - WA A7
5, (1 8 LAk b2 (0 - W) 7, MAZHRIZ )
L= )Nk k- Y5 U2 e M2 A7 (B3
Now, if in equation (13) the symbol for the specetral
tensor is changed from o8 to the more conventional svinbol
®,;. application to equation (B3) vields
. + ‘IA 4 "2 : 20 I v 2,
Bk = RN dus, o (=800 —alkEkk, Y )y
r
ke, + R ARBA=Y*d, bk —=Y)bE] -
6, (1—8y,). '*H'lk;ll.;;“ — )b My -
a9y, (1 AR ST RED Sl ":‘p:n}} {134)
The elements of the turbulence speetrum tensor ¢, may be
exhibited in expanded matrix form:
ECON b X Rk =Y b Xt fakskin ¥ bt
kS ] |
k: b2 - ‘»’r“f'.'t‘f'
dk SR IS L TR Bk Y- bt
h“l'lk'; +
£ VSRR S NIRRT S MR e
Lkl (1= Y1 B, (YR SRTE N O
L e i I TR S
Tl (1= Y% by &
kik ki 1y +,
The matrix is Hermitian: that is, the missing clements are
If the turbulence in the settling chamber of a supersonie
wind tunnel is considered to be isotropic, by the time it
reaches the working section it will be axisymmetrie, with the
longitudinal veloeity perturbations very much less than the
lateral perturbations; the change is due to the effects of the
damping sereens and the contraction (refs. 9, 13, and 14).
The shock-interaction behavior for a particular case of ex-
| . treme axisvmmetry will be caleulated herein as a matter of

interest.

According to reference 14 (with a slight change in nota-
tion), if the longitudinal speetral density in the settling cham-
ber (station A’) is written as

[nu)y  &Fx) cos® O (isotropie turbulenee)
then the longitudinal denstty in the working seetion (station
A) is given by

fn] =2 Fio) cos? OGN OVHIO) axisvmmetrie turbulenee)

(1

where « is the wave number at .17, 0 i= the associated wave
inclination, A is the number of damping sereens, 6(0) de-
pends on the sereen pressure-drop coefficient K, and 77(0)
depends on the parameters §; and 1 defining the wind-tunnel
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contraction. (See appendix A for the funetional forms.)
In what follows, N=4, A=2, /,=24.92, and /,=0.3186"
This set of values vorrt'ap()nds (in theory) to an axisym-
metrie turbulence at station .1 (just upstream of the shock)
such that the root-mean-square lateral velocity component
is 36.1 times the root-mean-square longitudinal component
(see table I, p. 46, ref. 14). The ratio 36.1:1 1s clearly an
extreme deviation from isotropy.

The effects of the changed form of [iu] on the integration
procedure will be illustrated by considering the mean-
square longitudinal velocity in the turbulence.  The relevant
question is (53), with [wu] being given by equation (C1)
From th. form of equation (C1) it will be convenient to carry
out the integrations in terms of s, rather than &; the trans-
formation is

I

I dx = i &*dxdp cos 6.dO
1

k=

'\..
e

©

Equation (35) then assumes the form

9 e
- - , cos?
wit= i A

LB )y cos’ 8

The last two integrals appear in the expression for uZ, the
mean-square longitudinal veloeity at station .1’ (the ex-
pression is of the form of eq. (57)); thus, equation (€2) may
be simplified to

T

The variable of integration may be changed from 6 to 8 hy
means of the transformation

¥ NI cos® ml(—)J mwxj dy
}

~
=
~

1§20 o ost 06 (C3)
cos’ @

1 cos* 8 y

0= _ ”
g € €os™ 8 i

A}

This results in the alternate form

SN E 172 Y P 17 COs* O cos® Od6 .
== 8 - (
u? (Il )f § cos? 6 (‘ n cos* 8\ 4

On numerical evaluation, the integrand of equation (('3)
was found to have a sharp peak near the upper limit, and

_—-——f

|
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that of (("4) a sharp peak at the origin.  The peaks were
avoided by dividing the range of numerical integration
among the two equations: (('3) was used over the range
000, and ((4) was used over the range 5°<6<90°,
where 6, is the value of 6 corresponding to §=5°
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TABLE

[--WAVE

ANGLEN
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AND

TRANSFER

@) M=1.01 (m=1.01668) (abbreviated table:

o,
dey

T 924200,
7. 9500
797500
LTI
5 25K}

N 43785
N, 05028
o, 46271
9. 97514
10, 48757

I8
12.5
1

(b A =105 (m=1.0830)

8,
deg

« These values apply for r=0 only,
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dey
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40, 468
15474
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444
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X5, 39

For 2=, values should be replaced by

'
deg

—NL G4
Rl -1
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L6345
1 3423

(abbrevisted 1able)

o
deg

1,237!
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—.0071
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= 55
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—. 24
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- 00

4, deg o', e
1} [
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10 1165
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I~ 20,80
20

AP

¢, deg

)

All other values are independent of 7.
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al. AN - 040 PATN 117
41 NK2 — . 401N 104 125
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—. 04N
—. 401y
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